AFRL-IF-RS-TR-2001-271
Final Technical Report
January 2002

GENERALIZED ACTIVE AGENT SYSTEM FOR
EXTENDING THE ACTIVE CAPABILITIES OF
RELATIONAL DATABASE SYSTEM (RDBMS)

University of Texas at Arlington

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

20020405 033

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-271 has been reviewed and is approved for publication.

APPROVED: Qﬂy ond A Q{‘%‘

RAYMOND A. LIUZZI
Project Engineer

FOR THE DIRECTOR: “ 1 1 i{W

MICHAEL TALBERT, Maj., USAF, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AF RL/FTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE OMB o, 07040189

Public teporting burden for this coligction of information is estimated to average 1 hour per response, incfuding the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of informstion, Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burdan, to Washington Headquartets Services, Directorate for Information
Operations and Reports, 1215 Jetferson Davis Righway, Suite 1204, Arlingtan, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank] 7. REPORT DATE 3. REPORT TYPE AND DATES COVERED
JANUARY 2002 Final Jul 00 - Sep 01
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
GENERALIZED ACTIVE AGENT SYSTEM FOR EXTENDING THE ACTIVE C - F30602-00-2-0604
CAPABILITIES OF RELATIONAL DATABASE SYSTEM (RDBMS) PE - 62232N/62702F
PR - R427

6. AUTHORIS) TA - 00

S. Chakravarthy, Y. Kim, and G. Gopalakrishnan WU - P4

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Texas at Arlington REPORT NUMBER
Computer Science and Engineering

416 Yates Street N/A
Arlington Texas 76019-0015
9. SPONSORING/TMONITORING AGENCY NAME(S) AND ADDRESSIES) 10, SPONSORING/MONITORING
Air Force Research Laboratory/IFTD AGENCY REPORT NUMBER
525 Brooks Road

Rome New York 13441-4505 AFRL-IF-RS-TR-2001-271

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Raymond A. Liuzzi/IFTD/(315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words)
The objective of this effort was to investigate knowledge base management integration techniques for extracting intelligent
information for a network-centered C41 environment. This report describes the problem of re-structuring a traditional
database system into a true active database system without changing the semantics of the underlying system. The approach
described provides a generalized event definition mechanism which extend the active capabilities of 2 RDBMS. This, in turn
provides the mechanism whereby active database semantics can be supported on an existing SQL Server by an ECA Agent
inserted between the SQL Server and its clients. Both a demonstration and results are also described.

14. SUBJECT TERMS 15, NUMBER OF PAGES
Computers, Software, Knowledge Bases, Data Bases, Artificial Intelligence 36
16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 gﬂev. 2-89) (EG)
Prescribed by ANSI Std, 239,18
Designed using Parform Fro, WHSIDIOR, Det 84

Contents

1 INTRODUCTION 1
1.1 Advantage of Providing the Active Capability to a RDBMS 2
1.2 Reasons for Choosing Oracle as Test DBMS 2
1.3 Contributions of this woﬁ(.. 2

2 OVERVIEW OF RELATED WORK 3
2.1 SENLINEL ..ooiitiieiecteeerceerte i eseree et e s sst e sb e e s s s s s b s e b s ae s b e s e s e s maseasnane s anesanannsas 3
2.2 The GATEWAY ApPproachcieirenenecnnneiseesennescsesnens 3

3 DESIGN ISSUES OF THE ECA AGENT 4
3.1 The Architecture of the ECA AEntcccoveevireeinreiorercienuersnsssensnesnssesenssesssnsessenses 4
3.2 Java Local Event Detector (Java LED).......cccvviviiicrninirinneesnsssemsnsesseenessssnassnas 6
3.3 SNOOP PrEPIOCESSOL......cucrermreiiriersresesennstnresessseseststesssessanssssesessessssscsasssasssssnsnsesssonss 7
3.4 Java Database Connectivity (JDBOC)......ccocvcesinrinrersunnirieiuisriseessesemsenssnessessnsnssessenss 7
3.5 Interaction between the ECA Agent Modulesccccoeveevinennnes 8

4 IMPLEMENTATION ISSUES OF THE ECA AGENT 9
4.1 TableS USEd.....ccoeeeremiereriierrenireeeesessoneseesssneosssnsssssssssnasessssssnnns 9

4.1.1 SysPrimitiveEvent 9
4.1.2 SysCompositeEvent 10
4.1.3 SysEcaTrigger 10
4.1.4 SysContext 11
4.1.5 EventContext 11
4.1.6 Version 12
4.2 The Language Filter and ECA Parseroceeeiieeerceneeenneteeesesecesenene 12
4.3 Persistent ManageT.........cccceereeveeenmmrnsiinisiesnisssnsnssissssissessssessssssesesssnsssssssassssassesens 14
4.4 Action Handling by the Java LED ..ot cessnesasscnsessenes 15

5 IMPLEMENTATION OF PRIMITIVE EVENTS 15
5.1 ECA AGENL...niieiiiecrinrcrciiniices i sese s e e st e n e e s e e st sbe s e s 15
5.2 Syntax of Primitive EVENLS ..ottt e 15
5.3 Processing of @ Primitive EVent........ooeeii e 16
5.4 Syntax for specifying multiple triggers on the same event..........ocounnicecricnnenn 19
5.5 Syntax for Dropping @ THZEET.......cevereienieineeince sttt ssses et s sessenns 20

6 CONCLUSIONS AND FUTURE WORK

6.1 FULUEE W OTK oot ee et ieeeeeeeeeeeeeeeeastaessaasesareessnsessssanessassssbesssnsseesessnsssssesesarssesnnns
7 REFERENCES

ii

List of Figures
Figure 1 The Gateway Architecturecccovciiriiieininnnisisionsceeeneeecescsscssesasseseessssessssses

Figure 2 General ECA Agent SYstemcccceoeeueeeruenserceressersessesnessssnsesneses SRR
Figure 3 The Architecture of ECA Agent SYStem.........cccocccruerrrrreriesersessnessenersesssesssesessssssssscesnenes

Figure 4 Global Event HiStory.....c...ccoceueemierimiiieneeentescorenssossansescesessesssses . T

Figure 5 Language and Functional Modules in ECA Parser.......c.c.cocecuueeremrueruesseesssseesessessesesssnnens

Figure 6 The Architecture of Persistent Managerccceeeercrueresurennseenees

Figure 7 Oracle SQL Statement............cccevevecerirrvernrerncacens etusmremet et ten s ta st et sas et s s sasesansasresres

Figure 8 Primitive Event Definition using Oracle SQL Statement......................

Figure 9 Parsing and Generating of Primitive Eventcccererenne.

Figure 10 Notification CReckcoceveireruirccnrercsisnecnisiesesserscessscssesnenes

Figure 11 Syntax of Defining a Trigger on Existing Event

Figure 12 The Changed Event Definition on Existing Event..............c.........

iii

List of Tables

~Table
" Table

Table
Table
Table
Table
Table
Table
Table
Table
Table

' Table
Table

voNocupd~LNO K-

b b
WN=O

SysPrimitiveEvent

SysPrimitiveEvent after the definition of event addStk
SysCompositeEvent

SysCompositeEvent after the definition of event addDel
SysEcaTrigger

SysEcaTrigger after the definition of event addStk
SysContext

SysContext after addDel related to Recent context
EventContext

EventContext table after the composite event, addDel
Version

Stock inserted and Stock-deleted

SysEca Trigger after the existing event (addStk) definition

iv

10
10

.10

11
11
11
11
12
12
17
19

GENERALIZED ACTIVE AGENT SYSTEM FOR
EXTENDING THE ACTIVE CAPABILITIES OF A RDBMS

Abstract

Database management systems (DBMS) have evolved remarkably to meet the
requirements of emerging applications. One of the requirements is to
satisfy the needs of many applications that require a timely response to
situations. Active database systems have been proposed as a paradigm to
represent real-world situations as part of the database monitor and
react to them automatically without user or application intervention.
Event Condition Action (ECA) rules are used to make a database system
active. In a Relational Database System (RDBMS), triggers can define
ECA rules. Events can be modifications of tables. Conditions can be the
checking of constraints. Rule part is defined in the body of triggers.
Even though a number of research prototypes of active database systems
have been built, ECA rule capability in RDBMSs is still very limited.
This report addresses the problem of turning a traditional database
management system into a true active database system without changing
the semantics of the underlying system. Our approach provides a
generalized event definition mechanism and extends the active
capabilities of a RDBMS. The advantages of this approach are numerous.
First, transparency is guaranteed. That is, we can add the active
capability without changing the client programs. Second, all the
underlying functionality of the RDBMS is maintained. Third, ECA rules
can be made persistent using the native database functionality. Our
approach is a generalized one because an ECA Agent can connect to any
RDBMS. N

Active database semantics can be supported on an existing SQL Server (we
use Oracle SQL Server in the current prototype) by the ECA Agent
inserted between the SQL Server and its clients. ECA rules are
completely supported through the ECA Agent without changing applications
in the SQL Server. Both primitive and composite events can be detected
in the ECA Agent'and actions are invoked in SQL Server. All events are
stored in the native RDBMS. The Java Local Event Detector (JavalLED) is
used to notify and detect both primitive events and composite events.
The ECA Agent uses Java Database Connectivity (JDBC) to connect to the
SQL server. The architecture of the ECA Agent and its implementation are
elaborated in this report.

1 INTRODUCTION

Traditional database management systems (DBMSs) are referred to as passive
since any situation to be monitored over the state of the database has to be done explicitly
by the user or application by executing queries or transactions. This traditional view
limits the utility of a DBMS limited as an information repository for emerging
applications. During the last decade, the need for making a DBMS capable of reacting to
specific situations without user or application intervention has been proposed. As a result,
DBMSs have evolved to meet the diverging requirements of several classes of
applications. Most new developments in database technology represent real-world
situations as a part of the database to monitor and react to them automatically without
user or application intervention. An Active DBMS can continuously monitor situations to
initiate appropriate actions in response to database updates and the occurrence of
particular states automatically. '

A frequently used example to distinguish the difference between a passive DBMS
and active one is a hospital environment. If an electrocardiogram is being recorded in a
database for an intensive care unit patient, a doctor or nurse is responsible for checking
the data values periodically to determine an emergency state of the patient when using a
passive database. However, in an active database, the DBMS will alert the doctor when it
detects any state of emergency based on the set of rules triggered as a result of the
updates. The monitoring of situations can be done by defining ECA rules on events of
interest. ECA rules consist of three components: An event, a condition, and an action. An
event is an indicator of a happening, which can be either simple or complex. Most events
are state changes produced by database operations (e.g., a method invocation or a
database update). The condition can be a simple or a complex query based on the current
database state, transitions between states, or event trends and historical data. Actions
specify the operations to be performed when an event has occurred and the condition
evaluates to true. After ECA rules are specified declaratively, it is the responsibility of
the DBMS to monitor the situation and trigger the rules when the condition is satisfied.
There have been a number of prototypes of active database systems that have been
developed, such as HIPAC [CHA89), Sentinel [CHA93], Starburst [WID96], Postgres
[STO91], etc. The prototypes listed are representative of a much larger number of active
database systems that have been designed using an integrated approach. That is, the
production rule components of active database systems have typically been integrated
directly into the kernel of the DBMSs. The implementation of an integrated approach
requires access to the internals of a DBMS into which the active capability is being
integrated. This requirement of access to internal code makes the cost high and
integration time long as well. Currently, no commercial DBMS supports full active
capability although a lot of active database technologies have been proposed. This report
tries to answer the question whether it is possible to turn a commercial DBMS into a true
active DBMS without making any changes to the underlying system [LI 98]. This report
considers the possibility of adding the active capability to Oracle DBMS. This report
introduces an approach that adds an agent between the Oracle SQL Server and the client
to provide full ECA functionality to the user.

1.1 Advantage of Providing the Active Capability to a RDBMS

There are many reasons why the use of a generalized architecture is appropriate
for adding full active capability:

e Maintenance of System functionality: None of the existing RDBMS
functionality would be lost.

e Scalability: The architecture would be more scaleable.

e Portability: Once an ECA Agent has been developed, it may be ported to other
DBMS:s.

e Transparency: The clients are unaware of the agent introduced between the
client and the server.

1.2 Reasons for Choosing Oracle as Test DBMS

Oracle has many features that facilitate the implementation of an active
component on top of an existing database. The features that have been exploited in our
approach are the following:

o Oracle DBMS provides relatively simple ECA rules using triggers although its
functionality is limited as compared with the active database prototypes such as
Sentinel, Ode, etc.

e Oracle DBMS offers Cursors. A cursor is a handle or name for a private SQL area
— an area in memory in which a parsed statement and other information for
processing the statement are kept. We use the feature of Oracle to issue recursive
SQL statements. Recursive calls are made for those recursive cursors. These
recursive cursors use a shared SQL area.

e Oracle is an open architecture and can be connected to any application using
many connection tools.

Another advantage of Oracle is that its Open Client database API is widely accepted in
industry, and many products and applications support the Oracle database library.

1.3 Contributions of this work

The contributions of this work are:

A client can create multiple triggers on the same event.

A client can create composite events and triggers on them.

Previously defined events can be reused.

Triggers associated with primitive or composite events can be

dropped.

5. Once events are created, they can be persisted into the database
system.

6. All primitive events and composite events can be detected, and actions
are invoked in SQL server.

PN

2 OVERVIEW OF RELATED WORK

2.1 Sentinel

Sentinel is an Object Oriented Active Database System. It integrates ECA rule

capability into the kernel of Open OODB. The goal of integration is the enhancement of
Open OODB from a passive OODB to an active OODB by incorporating primitive event
detection and support for nested transactions as part of its kernel. In addition, it supports
composite event detection, and rule management as separate modules. It uses the Open
OODB Toolkit (from Texas Instruments) as the underlying platform. Sentinel has support
for [CHA94a][CHA94b][CHA%4c]:

Primitive and composite event detection: Any method of any object class can be
a primitive event. Before and after variants of method invocation are permitted as
events. Composite events are formed by applying a set of operators such as AND,
OR, SEQ, etc.

Parameter contexts: The processing of composite events entails not only their
detection, but also the computation of the parameters associated with the
composite event. Parameter contexts are motivated by a careful analysis of several
classes of applications.

Online and batch detection of events: The composite event detector needs to
support detection of events as they happen (online) when it is coupled to an

- application or in offline mode.

Inter-application (global) events: A global event detector (or GED) provides
support for composite events whose constituent events come from different
applications.

Multiple rules: An event can trigger several rules.

Nested/cascading rules: Rule actions can raise events that trigger other rules.
Couphng mode: Coupling modes refers to the execution point of condition/action
pair relative to the event.

Rule scheduling: In the view of multlple rules and nested execution, the
architecture needs to support prioritized serial execution of rule, concurrent
execution of all rules, or a combination of the two.

2.2 The GATEWAY Approach

The Gateway approach is implemented in [VAN96]. The Gateway architecture is

a layered API approach. Figure 1 shows the Gateway architecture. The layer of the
Gateway approach is transparent to the client. Open Server (ECA Server in the Figure 1)
is used for this approach. The ECA Server receives a requirement and connects the SQL
Server and sends all information to the SQL Server. The SQL Server authenticates the
client and creates the connection. After connection is made, the Gateway takes control of
the client process.

Figure 1 The Gateway Architecture

The ECA Server preprocesses the SQL language and procedure requests from the client.
The coupling mode of events is processed to determine the execution points of events in
the ECA Server. The advantages of this architecture are:

e According to the coupling mode, both immediate and deferred trigger semantics
are implemented.
Parallel execution of ECA Server and SQL Server is possible.
Events are generated in the correct order.
Events are not lost.
Performance is enhanced.

3 DESIGN ISSUES OF THE ECA AGENT

This section discusses the design issues of the ECA Agent. They include the
architecture of an ECA Agent, the Java LED, and the SNOOP preprocessor. This section
shows how they are related to each other in the design of ECA Agent.

3.1 The Architecture of the ECA Agent

An ECA Agent is a general module in the sense that it can be used with any kind
of relational DBMSs such as Oracle, DB2, Sybase, Informix, etc. In this section, we give
the general design of an ECA Agent as it is shown in Figure 2. An ECA Agent provides
the client interface. The ECA Agent (called the ECA Server) works between multiple
clients and the SQL server. The message from clients is sent to the ECA Agent and then
the ECA Agent sends it to SQL server. The Result from the SQL Server is returned to the
client via an ECA Agent.

The ECA Agent is a multithreaded program. It is placed between clients and the
SQL Server so that the SQL Server can provide active capabilities with full user
transparency.

Oracle SQL

Server
I Client J\ /
DB2 SQL
I Client ECA Agent Server
\ Sybase SQL
Server

| Client

Figure 2 General ECA Agent System

From the point of the user, the ECA Agent works as a virtual active SQL Server. Not
only can it provide all the native functions of a relational DBMS, but also it provides all
the ECA active functions. Figure 3 shows the detailed architecture of the ECA Agent
system.

[
B
2
3
'

eopoepeescescecscsecsenccoscessssccsee

v

ECA Parser

v

I Persistent Manager I

|

9600 00es0ss0000OROICEIOROIOS

ECA Agent (ECA Server)

Figure 3 The Architecture of ECA Agent System

The ECA server has the following functional modules:

e Language Filter: First, all client requests are sent to the Language Filter. The
Language Filter checks the request to determine if it is an ECA command (extended
SQL command) or a pure SQL command. If it is an ECA command, it is sent to the

ECA Parser. If it is an SQL command, it is sent to the SQL Server through the Java
database connection (JDBC).

e ECA Parser: An ECA command from the Language Filter is scanned and parsed. If
there are no syntax errors, the parser generates the corresponding events and rules,
which can be detected by the Java LED. The Parser sends the events and rules to the
Persistent Manager.

e Java Local Event Detector: In a relational DBMS, triggers can detect only primitive
events. We use the Java LED to detect and execute the rules (condition/action pair)
associated with composite events.

e Persistent Manager: All events and rules need to be stored into the relational DBMS
for subsequent use. The Persistent Manager stores all ECA information into system
tables in a relational DBMS. The Persistent Manager restores the needed events and
rules from these tables when the ECA Agent starts or recovers.

The system tables include:
1. SysPrimitiveEvent: This table stores primitive events.
2. SysCompositeEvent: This table stores information about composite events.
3. SysEcaTrigger: Every trigger in system is stored in this table.

e Java Database Connectivity (JDBC): JDBC is used to connect the ECA Agent to the
SQL Server. Clients can request not only relational SQL commands but also user-
defined commands through JDBC, and JDBC gets values from the SQL server, which
is sent back to clients.

e Action Handling: When events occur, the related action defined for the event need to
be executed. Actions can be the modification of a system table by SQL operation
such as insertion, deletion, or update.

3.2 Java Local Event Detector (Java LED)

The Java LED is used to detect composite events. The Java LED detects events in
Java applications (user APIs). An event can be a method call from applications.
Composite events are detected according to parameter contexts such as RECENT,
CHRONICLE, CONTINOUS, and CUMULATIVE. These parameter contexts are
motivated by a careful analysis of several classes of applications. The parameter contexts
are classified as [KRI94]:

e Recent: In this context, only the most recent occurrence of the initiator for any
event that has started the detection of that event is used.

e Chronicle: In this context, for an event occurrence, the initiator, terminator pair is
unique. The oldest initiator is paired with the oldest terminator for each event.

e Continuous: In this context, each initiator of an event starts the detection of that
event. A terminator event occurrence may detect one or more occurrences of the
same event.

e Cumulative: In this context, all occurrences of an event type are accumulated as
instances of that event until the event is detected.

Figure 4 shows a global event history. In the Recent context, the most recent occurrence
of an event is used to detect a composite event. The composite event A will include the

event instances {e’,e},e!} (A is detected when e} occurs) and {e’,e;, €] } (A is detected

again when e occurs). In the Chronicle context, a parameter of event A is computed by
using the event instances {e,, e;, ¢, }. In the Continuous context, the first occurrence of
A has the instances {e,, e}, e, }. The second occurrence of A consists of the event

instances { e}, e}, e;}. In the Cumulative context, all occurrences of an event are
accumulated as instances of the event A when the event is detected.

» time

Figure 4 Global Event History

3.3 Snoop Preprocessor

Snoop is the Event Definition Language (EDL), which the Sentinel group has
developed. Snoop provides an easier way for the user to define events. The preprocessor
parses user-defined event and rule specifications expressed in Snoop, and inserts
appropriate Java code the application program. In other words, the Snoop preprocessor
converts Snoop expressions into Java APIs and inserts them into the user program.

3.4 Java Database Connectivity (JDBC)

The JDBC is the tool to connect the Java applications to the relational DBMS. In
our prototype, we use JDBC to send SQL statements from the client’s interface to the
relational DBMSs. The first thing we need to do is to establish the connection with the
DBMS that we want to use. There are three steps to do this:

1) Loading the Drivers: Loading the driver or drivers takes one line of code. If,
for example, we want to use the Oracle driver, the following code loads it:
Class.forName (“oracle.jdbe.driver.OracleDriver”);

When we have loaded a driver, it is available for making a connection with a
DBMS.

2) Making the Connection: The second step in establishing a connection is to
have the appropriate driver connect to the DBMS. The following line of code
illustrates the general idea:

Connection con=DriverManager.getConnection(url,”Login”,”Password”);.
If we want to use Oracle as a test DBMS, the url should be
“jdbc:oracle:thin:@ tokyo.dbcenter.cise.ufl.edu :1521:0RCL.”

3) Creating the JDBC Statements: A Statement object is what sends the SQL
statement to the DBMS. We simply create a Statement object and then execute
it, supplying the appropriate executes method with the SQL statement we want
to send. For a SELECT statement, the method to use is executeQuery. For
statements that create or modify tables, the method to use is executeUpdate.
The following line of code is used to create the Statement object “stmt”:
Statement stmt = con.createStatement();. ‘

We need to supply this statement to the method we use to execute this
statement:

stmt.executeQuery(“select * from portfolio”);.

We can get the result from the RDBMS using the following line of code:
ResultSet rs= stmt.executeQuery(“select * from portfolio”);.

3.5 Interaction between the ECA Agent Modules

In this section, we discuss how each ECA Agent module works and interacts. If a
user sends his request to the Language Filter, the Language Filter filters the user request
to determine if the user request is a SQL command (insert, delete, update, select, etc) or it
is ECA command (extended create trigger statement which includes event definition).
SQL commands are directly sent to SQL Server through JDBC. ECA commands, on the
other hand, are sent to the ECA Parser. The ECA Parser scans ECA command and checks
if the trigger name and the event name of the event are duplicates. Then the ECA Parser
generates a Java source file. For example, if the primitive event name is addStk and the
user name is ykim, the Java file name is ykimaddStk.java. After the file ykimaddStk is
generated, it is compiled (we use the method exec () of java.lang.Runtime class to
compile a Java source file. Refer to the Compile File method of ConstructClass.java) and
then the method, call_addStk is invoked by dynamic method call using ExecuteMethod()
of CallDynamicMethod class (we use the method invoke() of ClassLoader class).

The reason for generating, compiling the Java source file, and invoking the

‘method is to obtain the event handle of the event so as to detect a composite event related
~ to the primitive event (refer to Figure 4). If we have another primitive event, delStk, the

processing steps on the primitive event, delStk in the ECA Parser is the same as those of
the primitive event, addStk. If we have the composite event, addDel (this event needs
both addStk and delStk to be detected by the Java LED), the Java source file,
ykimaddDel.java is generated by the ECA Parser and compiled by the exec() method of
java.lang Runtime class. The call_addDel() method in the ykimaddDel java file is
invoked to initialize the Java LED and obtain the event handle of the composite event,
addDel in the Java LED. The only difference in the file generated (ykimaddDel java)
between primitive and composite events is the addDel rule definition, which includes a
condition and an action method. The Persistent Manager works on table modifications. It

stores trigger information of both primitive and composite events in the table,
SysEcaTrigger, event information of primitive events in the table, SysPrimitiveEvent,
and event information of composite events in the table, SysCompositeEvent (refer to
section 4 on tables).

4 IMPLEMENTATION ISSUES OF THE ECA AGENT

This section discusses the implementation of the ECA Agent system. In this
section, we elaborate on the purpose of the tables used by ECA agent and how they are
formatted. In this prototype, the tables store the persistent information on primitive
events, composite events, and ECA Actions. Each functional module is also examined in
more detail.

4.1 Tables used
4.1.1 SysPrimitiveEvent

The table, SysPrimitiveEvent stores the information on primitive events. The
structure of SysPrimitiveEvent is shown in Table 1.

Table 1 SysPrimitiveEvent

dbname | username | eventname | tablename | Operation | Beafoperation | timestamp | vno

The operation column includes the operation name on a relational table. In this prototype,
operation names should be one of Insert, Delete or Update. The column, beafoperation
includes one of Before or After operation (Oracle has two kinds of operations such as a
Before operation and an After operation). The TimeStamp implies the time of the event
definition. Vno is the number indicating the occurrences of the same event. When a
primitive event is defined, this table is populated with the corresponding items of the
event. For example, when the following trigger with a primitive event is defined:

Create trigger t_addStk after insert on stock event addStk
The table, SysPrimitiveEvent contains data as shown in Table 2.

Table 2 SysPrimitiveEvent after the definition of event addStk

dbname

username

Eventname

tablename

Operation

Beafoperation

timestamp

ORCL

ykim

addStk

stock

Insert

After

265un-00

4.1.2 SysCompositeEvent

The table, SysCompositeEvent is used to store the information on composite
events. The structure of this table is shown in Table 3.

Table 3 SysCompositeEvent

dbname

usermame

eventname

eventDescribe | Timestamp

Coupling

context | Priority

In Table 3, the coupling mode should be one of IMMEDIATE, DEFERED, and
DETACHED. The context can be one of RECENT, CHRONICLE, CONTINUOUS, or
CUMULATIVE. The priority defines the priority of this composite event. The composite
event definition, addDel is shown below. EventDescribe shows which primitive events
are included to form this composite event and operator. A trigger with the composite
event definition is shown below:
Create trigger t_addDel event addDel = addStk " delStk RECENT IMMEDIATE 1....
After this trigger is defined, the system table, SysCompositeEvent contains the data
shown in Table 4.

Table 4 SysCompositeEvent after the definition of event addDel

dbname

Username

eventname

eventDescirbe | timestamp

coupling

context | priority

ORCL

Ykim

AddDel

addStk~delStk | 26-jun-00

Immediate

Recent 1

4.1.3 SysEcaTrigger

This table is used to store the information on triggers created by the user. When a
trigger is defined, a check for trigger duplication is performed by searching this table.
The structure of the table, SysEcaTrigger is shown in Table 5.

" Table 5 SysEcaTrigger

dbname

Username

Triggername TriggerProc

timestamp

eventname

The column, TriggerProc in Table 5 contains the name of the procedure definedona
trigger. When the trigger fires, this procedure will be executed. Several different triggers

can be defined on the same event.

10

Table 6 shows the SysEcaTrigger after the definition of event addStk.
Table 6 SysEcaTrigger after the definition of event, addStk

dbname | Usemame | Triggemame | TrnggerProc timestamp eventname
ORCL Ykim t addStk t addStk_proc 26-jun-00 addStk
4.1.4 SysContext

The table, SysContext is used to store the occurrence number (Vno) of an event
associated with a context. This table is used for keeping track of event occurrences to be
used for detecting a composite event. The structure of this table is shown in Table 7.

Table 7 SysContext

EventName Context Vno

Suppose the event, addDel associated with the context, RECENT has occurred three
times. The following Table 8 shows the tuples inserted into SysContext table.

Table 8 SysContext after addDel related to RECENT context.

EventName Context Vno

addDel Recent 1
addDel Recent 2
addDel Recent 3

4.1.5 EventContext
Table EventContext is used to store information on primitive events and contexts

where a composite event occurs. The structure of the EventContext table is illustrated in
Table 9.

Table 9 EventContext

EventName Context

After the following create trigger statement is processed, the contents of the table,

EventContext will be as shown in Table 10.
Create trigger t_addDel event addDel = addStk » delDtk RECENT

Table 10 EventContext table after the composite event, addDel

EventName Context
DelStk Recent
AddStk Recent
4.1.6 Version

This table is used to store the occurrence number of a primitive event. Initially,
this version number is zero. When a primitive event occurs, the version number of the
primitive event is increased by 1. The version number is also stored into the
SysPrimitiveEvent table. The structure of the table Version is shown in Table 11.

Table 11 Version

The Version number is updated in the following way:

update SysPrimitiveEvent set VNO = VNO + 1 where EVENTNAME = 'addStk’;

delete from Version;
insert into Version select' VNO from SysPrimitiveEvent where EventName = ‘addStk’;

Event context and Version tables are joined into SysContext table for use with parameter
context. The join is executed by the trigger action on basic database operations such as
insert and delete in the Persistent Manager.

4.2 The Language Filter and ECA Parser

All client commands go through the Language Filter. The ECA Commands are
separated and sent to the ECA Parser. On the other hand, other SQL commands are sent
to the SQL Server via the JDBC. It is the responsibility of the Language Filter to
distinguish the types of ECA commands such as primitive event command, composite
event command, repeated event command, etc. The Language filter filters each event
command and then sends it to the corresponding functional modules in the ECA Parser.

12

In our implementation, functional modules are named CreatePrimitive(),
Createcomposite() and RepeatPrimitive() in the class ECAparser.

In the ECA Parser, the ECA commands are filtered from the Language Filter. The
| ECA Parser tokenizes and parses the commands. The syntax is checked first. If there are
no syntax errors, the ECA Parser will create corresponding events and rules that are
compiled by the Java Local Event Detector (JavaLED). Figure 5 illustrates the Language
Filter and the functional modules of the ECA Parser.
|

@ ECA Parser function modules

—P Language Filter

Primitive Event Parser E

Composite Event Parser E

Existing Composite Event :a

— P
—P
> ' 4 Existing Primitive Event Parser a
—p
——p

Drop Trigger Function E

Figure 5 Language and Functional Modules in ECA Parser

There are five functional modules in the ECA parser:

1) Primitive Event Parser: This module parses a primitive event.

2) Composite Event Parser: This module parses a composite event.

3) Repeated Primitive Event Parser: This module parses the repeated primitive
event. A repeated primitive event implies that a trigger has already been
created on the existing primitive event. ’

4) Repeated Composite Event Parser: This module parses the repeated composite
event. If a trigger has already been created on the existing composite event,
this functional module parses the event.

5) Drop trigger: If a client requests a SQL command such as “drop trigger
triggerName”, this module parses the SQL command.

13

O

4.3 Persistent Manager

All the data structures those are stored in memory for a program/application
executes, goes away at the end of the program execution. That is, when the application
program terminates, the memory used for that application is recovered by the operating
system. Non-DBMS environments use the file system to store data across application
runs. In a Relational DBMS, we can use tables to do this. The Persistent Manager does
this as part of the ECA agent. The ECA rules handled by the ECA agent are kept in the
RDBMS. The Persistent Manager is in charge of the management of the ECA rules. The
list below shows the functions of the Persistent Manager:

e Maintain triggers: These triggers define the actions, which should be

executed, when either primitive events or composite events occur.

e Maintain tables: The Persistent Manager, based on triggers, manages tables.

e Persist ECA rules: The information of all the ECA rules is stored into the

Relational DBMS.

e Restoration of the ECA rules: When system restarts, all ECA rules are

restored.

e

Figure 6 illustrates the Architecture of Persistent Manager.

ECA Agent l¢

A 4

Generate SQL for
insert, delete, and
update statements |

RDBMS
(System
Tables)

» JDBC

Persistent Manager

Figure 6 The Architecture of Persistent Manager

When a user connects the ECA Agent, a thread serving one client is created. The
persistent Manager runs inside the thread. It generates ECA rules for the triggers stored in
the system tables of the RDBMS. The generated ECA rules for triggers are sent to the
RDBMS through JDBC and are used as trigger action parts when a related event occurs.

14

4.4 Action Handling by the Java LED

The Actions executed by the Java LED can be the execution of SQL commands in the
Oracle Server, the update of meta-data, and the invocation of stored procedures when a
composite event is detected. Every ECA rule has its event definition as well as rule (only
action in case of a trigger) definition. Every event action is processed according to its rule
definition.

5 IMPLEMENTATION OF PRIMITIVE EVENTS

This section discusses the implementation details of primitive event detection.
Although relational DBMSs provide a trigger mechanism, it is very limited in
functionality. Full-fledged active capability is useful for many applications. The ECA
Agent uses the trigger mechanism of underlying RDBMS to support active capability and
extends it significantly to turn the RDBMS into a fully active RDBMS.

5.1 ECA Agent

Triggers supported by the RDBMS have a number of limitations:

e A trigger cannot be applied to more than one table. (Sybase and DB2 5.0 has this
limitation, but Oracle and DB2 6.0 does not have this limitation any more).
Composite events are not allowed.

New event on a table for the same operation (insert, delete or update) overwrites
the previous one without a warning message.

e Only atomic values (not tables) can be passed as parameters to stored procedures.

The ECA Agent overcomes the above-mentioned limitations by providing a complete
active database capability. The functionality extended by the ECA Agent includes the
specification of any number of triggers on the same event. Suppose, we have
already defined one primitive event as

Create trigger t_addStk on Stock after insert event addSik..........
Once one trigger is defined, we can define another trigger on the same event as follows:

Create trigger t_addStkl event addStk...

5.2 Syntax of Primitive Events

In this section, we describe how we define a primitive event using SQL statement.
In defining a primitive event, the only difference between Oracle SQL statement and this
ECA Agent statement for primitive event is the event declaration using the keyword,
event. That is, we extend the trigger definition to provide ECA active capability. Figure 7
shows Oracle SQL statement. Figure 8 shows syntax of primitive event definition of the
ECA Agent using Oracle SQL grammar.

Create trigger t_addStk after insert on stock

For each row

Begin

dbms_output.put_line('trigger t_addStk occurs on primitive event, addStk");
End;

Figure 7 Oracle SQL Statement

create trigger t_addStk after insert on stock Event.addstk:s
for each row a s
begin
dbms_output.put_line(‘trigger t_addStk occurs on primitive event, addStk");
end; v

Figure 8 Primitive Event Definition using Oracle SQL Statement

A primitive event is defined on the table Stock, for the operation insert, in the above
example. The trigger definition for the primitive event is written by SQL statement
between begin and end and executed in the SQL server.

5.3 Processing of a Primitive Event

The processing of a primitive event involves parsing and generation of the

primitive event node in the event graph. Figure 9 shows the processing steps of the
primitive event. The processing of the primitive event includes the following steps:

1)
2)

3)
4)

5)

Syntax check: The command is checked. If a syntax error is found, an error message

is returned to the client.

Duplication check on trigger: The duplication of trigger name is not allowed in the

RDBMS. Trigger name of an event is checked. If trigger name is duplicated, an error

message is returned to client.

Persistent code generation: SQL code is generated and persisted.

Java LED code generation: If there is no error in defining a primitive event, code is

generated to create a primitive event node in the Java LED. We create the primitive

event, addStk using the Java LED as follows:

a) ECAAgent myAgent= ECAAgent.initializeECAAgent();

b) EventHandle addStk = myAgent.crcatcPrimitiveEvent("addStk”, “Led”,
EventModifier. BEGIN, “void addStk()”, DetectionMode.SYNCHRONOUS);

c¢) The above will be inserted into the file, ykimaddStk java in our implementation.

File generation: We create the new file to get an event handle for the primitive event.

(For example, in our implementation, ykimaddStk java is created. This file is

compiled automatically and implicitly using Java Runtime class). We use dynamic

16

method call using Java Reflection (In our implementation, the called method is
call_addStk inside the file, ykimaddStk java).

Create related tables: The tables, Stock_inserted and Stock_deleted are created. The
Stock_inserted table is used to store the inserted tuples of a table. It is very similar to

table Stock except that it has VNO column. VNO is used to store the occurrence

number of the insert operation. For example, the event, addStk is detected whenever a

tuple is inserted into Stock table. VNO is increased by 1 for each insertion. (The
value of VNO is used to collect parameter for composite event). Table 12 shows
Stock_inserted and Stock_deleted tables.

Table 12 Stock_inserted and Stock_deleted

Primitive

Event Parser
A 4

Syntax check

Error?

NO

Naming check

NO

Error?

symbol cO_name Price timestamp Vno
ykim IBM 2132 26-jun-00 1
Language Filter | Client

\

LED code
generation

Persistent
Manager

T

>

Persistent Code

Generation

Figure 9 Parsing and Generating of Primitive Event

17

7) Trigger creation for primitive event: After an operation is executed on ‘Stock’, the
trigger will be fired for the operation. The trigger for the operation includes the
following steps:

e Set and get event occurrence number:
Update SysPrimitiveEvent set VNO=VNO+1 where eventName =
‘addStk’;
Delete from Version;
Insert into Version select VNO from SysPrimitiveEvent where eventName
= ‘addStk’; _
e Insert tuples into table, SysContext (to be used for composite event).
Delete from SysContext where eventName="addStk’;
Insert into SysContext select * from eventContext, version where
eventContext.eventName ='addStk’;
e Table, eventContext is made when we define a composite event.
e Insert an inserted tuple into table, Stock_inserted (in the table, Stock_deleted,
new is replaced with old).
e Primitive Event Notification:
Insert into notify select EVENTNAME, TABLENAME, VERSION.VNO
from SYSPRIMITIVEEVENT, VERSION where EVENTNAME = ‘addStk’;
e When a primitive event occurs (in this case, insert operation), event name and
table name and version number are inserted into notify table.
o Then, all the contents of notify table on the primitive event are inserted to the

Java LED using primEvent method of Led java when a primitive event occurs.

The raiseBeginEvent method inside primEvent raises the primitive event.

Notify table check is shown in Figure 10.

String qs2 = "select eventname from notify";

Jdbe selectSql = new Jdbe(rdbms,url,username,password,gs2);
qs2 = selectSql.GetFromNotify(.trim O;

String en = selectSql.GetFromNotify(.trim Q;

if (len.equals("F") && len.equals("Empty")) // if trigger has been fired
{ qs2 = "select TABLENAME from notify";
selectSql = new Jdbc(rdbms,url,username,password,qs2);
String tn = selectSql.GetFromNotify().trim (;

gs2 = "select VNO from notify";

selectSql = new Jdbc(rdbms,url,username,password,gs2);
String vnos = selectSql.GetFromNotify().trim ();

Integer vnoi = new Integer(vnos);

int vno = vnoi.intValue();

if(test] == null) test! = new Led();
test].PrimEvent(en,tn,vno) // to raise primitive event

}

Figure 10 Notification Check

18

5.4 Syntax for specifying multiple triggers on the same event

Once an event is defined, the user can define additional triggers on the event.
Figurell illustrates the syntax of defining trigger for a previously defined event.

Create trigger t1_addStk event addStk

for each row

begin

dbms_output.put_line('trigger t1_addStk occurs on existing event, addStk');
end;

Figure 11 Syntax of Defining a Trigger on Existing Event

In this example, we do not have to specify after [operation] and on [table-name]. In our
implementation, if a user creates another trigger on an existing event, Repeated Primitive
Event Parser (the method, RepeatPrimitive(.........) in ECAparser class) is called. The
trigger is transformed into original Oracle SQL syntax as shown in Figure 12. This
functionality is used to add an additional trigger action to an existing event.

Create trigger t1_addStk
for each row
begin
dbms_output.put_line('trigger t1_addStk occurs on existing event, addStk);
end;

Figure 12 The Changed Event Definition on Existing Event

After this trigger deﬁnitidn, only SysEcaTrigger table is updated adding the tuple (as
shown in shadow in Table 13):

Table 13 SysEcaTrigger after the .existing event (addStk) definition

Dbname | Username | Triggernam Triggerproc timestamp | eventname
e

ORCL Ykim T addStk t addStk proc 26-jun-00 addStk

ORCL Ykim T1 addStk | t1 _addStk proc | 26-jun-00 addStk

19

5.5 Syntax for Dropping a Trigger

The Syntax of dropping a trigger is the following in the Oracle DBMS:
Drop trigger trigger_name;

Our implementation also uses the same syntax for user transparency. When the user
submits a drop command, our implementation checks if this trigger is defined on a
primitive event or a composite event. If it is defined on a primitive event, it invokes the
“Drop Trigger on Primitive” method. If the trigger is defined on a composite event,
“Drop Trigger on Composite” method is invoked. If the trigger is not defined on a
primitive event or a composite event, the trigger is considered as original RDBMS
trigger.

When the client sends a drop trigger request to the ECA Agent, the ECA Agent

takes the following steps:

e Delete the tuple related to the trigger from the table, SysEcaTrigger.

e Drop the trigger in the Oracle RDBMS.

e Before a primitive event is removed from SysPrimitiveEvent table, we first
need to check if another trigger has been created for the event. If there are no
other triggers defined on the primitive event, the event tuple is removed from
the table, SysPrimitiveEvent. If there is a trigger defined on the primitive
event, the event cannot be removed from SysPrimitiveEvent.

6 CONCLUSIONS AND FUTURE WORK

In this report, we presented the details of design, architecture, and implementation
of the ECA Agent system. The contributions of the project are as follows:
e The ECA Agent system significantly extends the active capability of any

RDBMS. This approach has some advantages:

It does not change the SQL Server/Client.

It has transparency to the clients.

It has extensibility.

A Full-fledged active capability is supported.
. We use the JDBC to connect the SQL Server. By using the JDBC, you can

connect any SQL Server.

6.1 Future Work

In our implementation, we use Oracle as the test database and we extended the
active capability of Oracle Universal Database. We can use the same approach for
developing agents for other DBMSs. The ECA Agent system is a module that provides
active capabilities to a RDBMS without changing the RDBMS itself. Nowadays, most of
the commercial RDBMSs provide users with programming language virtual machine. For
example, the Oracle 8.i has the Java Virtual Machine. This will allow us to put all the
components into the RDBMS. The Java LED, the Snoop Preprocessor, and the ECA
Agent system can run in the same address space as that of an RDBMS. Obviously, this

20

will enhance the performance of the overall system. We also plan on extending this to
Sybase and DB2 RDBMSs.

7 REFERENCES

BER91 Berndtsson, M., “ACOOD: an Approach to an Active Object Oriented
DBMS,” Master’s report, University of Skovde, September 1991.

BER92 Berndtsson, M. and Lings, B., “On Developing Reactive Object_Oriented
Databases,” in IEEE Quarterly Bulletin on Data Science, Special Issue on Active
Databases, 15(1-4):31—34, 1992.

BER94 Berndtsson, M., “Reactive Object-Oriented Databases and CIM,” in
Proceedings of the 5th International Conference on Database and Expert Systems
Applications, volume 856 of Lecture Notes in Computer Science, pages 769--778.
Springer, 1994.

CHA89 Chakravarthy, S., “Rule Management and Evaluation: An Active DBMS
Perspective,” in Special issue of ACM Sigmod Record on rule processing in
databases, 18(3):20-28, 1989.

CHA93 Chakravarthy, S., Krishnaprasad, V., Anwar, E., and Kim, S.K., “Anatomy of
a Composite Event Detector,” in Technical Report UF-CIS-TR-93-039, University
of Florida, E470-CSE, Gainesville, FL, December 1993.

CHAY94a Chakravarthy, S., Krishnaprasad, V., Anwar, E., and Kim, S.K., “Composite
Events for Active Databases: Semantics, Contexts and Detection,” in Proceedings
International Conference on Very Large Databases, Santiago, Chile, 1994, pp. 606-
617.

CHA94b Chakravarthy, S., Anwar, E., Maugis, L., and Mishra, D., “Design of Sentinel:
An Object-Oriented DBMS with Event-Based Rules,” in Information and Software
Technology, Vol. 36, pp. 559-568, 1994.

CHA94c Chakravarthy, S. and Mishra, D., “Snoop: An Expressive Event Specification
Language for Active Databases,” in Data and knowledge Engineering, 13(3),
October 1994.

CHA98 Chamberlin, D., “A Complete Guide To DB2 Unviersal Database,” IBM
Almaden Prototype Center, 1998.

DAS99 Dasari, R., “Events and Rules for Java: Design and Implementation of a
Seamless Approach,” Master s report, University of Florida, 1999.

21

DIA91 Diaz, O., “Rule Management in Object-Oriented Databases: A Unified
Approach,” in Proceedings 17" International Conference on Very Large Data
Bases, Barcelona (Catalonia, Spain), Sept. 1991.

GEH91 Gehani, N. and Jagadish, H. V., “Ode as an active database: Constraints and
triggers,” in Proceedings of the Seventeenth International Conference on Very
Large Databases, pages 327-336, Barcelona, Spain, September 1991.

KRI94 Krishnaprasad, V., “Event Detection for Supporting Active Capability in an
OODBMS: Semantics, Architecture, and Implementation,” in Master’s report,
Database Systems R&D Center, CIS Department, University of Florida,
Gainesville, 1994.

LI98 Li, L., “An Agent-Based Approach to Extending the Native Active Capability of
Relational Database Systems,” Master’s report, University of Florida, Gainesville,
1998.

STO91 Stonebreaker, M. and Kemnitz, G., “The POSTGRES Next-Generation
Database Management System,” in Communications of the ACM 34(10):78-92,
1991.

VAN96 Vance, D., “Supporting Active Database Semantics in Sybase,” Master s
report, University of Florida, Gainesville, 1996.

WID96 Widom, J., “The Starburst Active Database Rule System,” in IEEE
Transactions on Knowledge and data engineering, Vol.8, No. 4: August 1996, pp.
583-595.

22

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for
Information Dominance and its transition to aerospace systems to

meet Air Force needs.

